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NONLOCAL EFFECTS IN BRITTLE CRACK PROPAGATION*

N. Ari and A.C. Eringen
Princeton University
Princeton, NJ 08544

ABSTRACT

Stress distribution near the tip of a constant velocity crack is

determined by means of nonlocal theory of elasticity. The maximum stress

is finite and it allows one to utilize the maximum stress hypothesis to

determine the terminal velocity of running cracks.

1. INTRODUCTION

One of the fundamental mechanisms of dynamic rupture phenomena is

that of crack propagation. The angular distribution and the maxima of the

crack tip stresses vary strongly with the crack velocity and the dynamic

effects become important. One has to solve an elastodynamic problem to

obtain these dynamic stresses so that at least a qualitative understanding

of the crack motion can be understood.

The present work investigates stress distribution near the tip of

a moving crack in a brittle elastic solid by means of the recently developed

theory of nonlocal elasticity [1].

Supported by the Office of Naval Research.



2

The dynamic crack problems are rather difficult to solve without

some simplifying assumptions. Most common among them are the constant

crack tip velocity and/or the loading conditions which allow self-similar

crack motions. As such, these problems represent a highly contrived picture H
of the actual rupture phenomenon. Nevertheless, these models prove to be

useful in discussing the velocity dependence of the crack tip stresses.

One of the earliest and simplest models of a moving crack is the

Yoffe's model [2]. A straight line crack of fixed length 2k moves with

a constant velocity in an infinite plate subject to uniform tension perpen-

dicular to the crack (Fig. 1). Below, we present a solution of Yoffe's

problem within the context of nonlocal elasticity.

The classical elasticity solution of Yoffe's problem as well as

other classical treatments of uniformly moving cracks (3-5) have provided

certain insights into dynamical aspects of brittle fracture and inspired

subsequent research. However, these studies have remained inadequate in

explaining a number of important features of dynamic crack propagation.

To this end, the following points are worth noting:

(i) The classical elasticity solution yield the familiar square root

stress singularities at crack tips. In order to circumvent the

difficulties related to infinite stresses, the dynamic fracture

criteria are based on energy considerations (energy release rate).

However, the dynamic failure is localized at the crack tip and

it depends on the critical stress levels, A maximum stress criterion

is therefore more appropriate.
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(ii) The dynamic stress intensity factor in Yoffe's solution

(1.1) K = Lim [(2Urr) tY(r,6:0)]
r-O

turned out to be independent of crack tip velocity and equal to

its static value. This result is contrary to experimental obser-

vations that K should vary with the crack speed.

(iii) The analytic expressions of the classical solutions imply that

the Rayleigh wave velocity c R is a natural upper bound for the

crack tip velocity. However, for all materials observed, the

terminal velocity Vt remained considerably less than cR [6].

Since Mott [7] first addressed the problem of a modified Griffith

criterion for a moving crack, the determination of the limiting

velocity Vt has been an open problem. Operating on the premise

of a constant surface energy yo , Roberts and Wells arrived at a

formula expressing the terminal velocity [8]. However, experimental

evidence indicates that the surface energy varies with the crack

velocity, i.e. y = y(V). Therefore, Freund [9] considers any

agreement of their theoretical terminal velocity with the experimental

one rather accidental. An additional difficulty in dealing with sur-

face energy concept is its experimental determination and accuracy.

(iv) A more involved fracture phenomenon is that of crack bifurcation --

a rapidly moving crack suddenly branches into two new cracks. The

precise physical source of this mechanism is not known. Neither is

it settled as to which criterion is better suited to determine the
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prebranching velocity and the bifurcation angles once the

solution for the dynamic problem is given [10].

The motivation for the present work is derived from the foregoing

considerations. In order to develop controlled fracture processes and crack

arrest mechanisms, the need for addressing the above questions is clear. En-

couraged by the results of the static nonlocal crack problems [11-13], we will

pursue the solution of the nonlocal Yoffe problem. The nonlocal theories

incorporate the long range interactions and the microstructure dependence

intrinsically. Hence, they provide a more realistic framework for the

treatment of crack problems.

Finally, the formulation of a mixed boundary value problem in nonlocal

elastodynamics is in itself important. Difficulties related to mixed boundary

conditions have been considered in our earlier work [12,14]. In the present

work, in addition, we discuss a modification of the field equations due to

the dynamic effects. Throughout the work, emphasis will be on how the

nonlocality modifies the dynamic crack tip stresses.

Section 2 formulates the nonlocal boundary value problem. In Section

3, the ensuing dual integral equations are solved. The velocity dependence

of the crack tip stresses is given in Section 4. Section 5 compares the

nonlocal results with the classical ones and discusses their relevance to

dynamic fracture criteria. The quantitative results are gratifying.

2. NONLOCAL FORMULATION

In nonlocal elasticity for isotropic solids, the stress constitutive

equations are given by [l).
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(2.1) t kS [x'(jx1-xj) err (X')6kt + 2Pi'(Ix1-xIekZ (x'))da(x')

where the integral is over the two-dimensional plane region R(x',y') and

ekX is the strain tensor which is related to the displacement vector uk by

(2.2) ek (Uk, + UL,k)

Here, and throughout an index following a comma represent gradient,

e.g.

UkZ = Duk/OxZ

The nonlocal kernels X'(Ix'-xi) and P'(Ix'-xl) represent the

influence of the neighboring strains at x' on the nonlocal stress at a

reference point x. They are usually determined by requiring that the

nonlocal field equations yield identical dispersion relations to those

derived from atomic lattice dynamics. In this way, in [12], we introduced

a two-dimensional kernel

(2.3) X'/ = / = c(jx'-xI) = a.2 KO{[(x' -x) 2 +(y-y) 2 ] } 

where K0  is the zeroth-order modified Bessel function and S is the

nonlocality parameter. In the local limit , (2.3) reverts into

a Dirac-delta functional and (2.1) yields the classical Hooke's

law. In addition, (2.3) has the convenient property that
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(2.4) 0- E22) (x,y) = 6(x,y)

where E:=1/$ and 6 is the Dirac-delta functional.

For nonlocal elasticity (when the effects of nonlocal residuals and

the body forces are excluded) the integral balance equations of linear

momentum yield the equations of motion

(2.5) tkz,k : p,

where a superposed dot represents the material time derivative. Due to the

integral form of constitutive equations, (2.5) is of integro-differential

character. For such systems, it is very difficult to establish existence and

uniqueness theorems and special care is needed in the formulation of mixed

boundary value problems. In addition, a closer look at the field equations

signals certain difficulties for cases where the displacement fields are dis-

continuous such as in bodies with cracks. For example, in (2.5), when U2,

term is discontinuous, the tkik term is very likely not to be discontinuous,

since the discontinuities in the displacement fields will be smoothed out by

the integral operator in (2.1).

With the appearance of the crack, some interatomic bonds are eliminated

and inhomogeneities arise within a narrow boundary layer near the crack sur-

faces. The nonlocal body forces become important and the use of nonhomogeneous

kernels are required. Since, however, the inhomogeneities are confined to a

narrow domain, we can approximate the problem with a homogeneous kernel, pro-

vided the compatibility of the crack discontinuities with the nonlocal field

equations are ensured.
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To this end, a modification of the field equations can be obtained by

utilizing the relation (2.4), i,e,

(2.6) (1- 2 ,k Okk,k = V pu

where

SkZ = Xerr 6 kX + 2p e i

is the local (classical) stress tensor. (2.6) together with the appropriate

side conditions constitute a sufficient solution for the integral balance

equations. The modified equations of motion are singularly perturbed dif-

ferential equations and they are simpler than the integro-differential system

given by (2.5). (2.6) can be derived alternatively from integral balance

equations by imposing uniform continuity requirements on nonlocal stresses

and displacements [15].

In the two-dimensional formulation, we assume that the displacement

fields can be derived from wave potentials O(X,Y,t) and (X,Y,t), i.e.

(2.7) u ax + ;/Y

V = 30/3Y - aX

Substituting (2.7) into (2.6), we obtain two scalar wave equations

(2.8) (0 2 2 = 2

2 2) ip c2V24

where

cl C(X + 2V)/p]4 , C2 ( P)"
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which must be solved to determine the displacement field. In the case

of the constant velocity crack problem, it is more convenient to intro-

duce a moving coordinate system (Fig. 1),

(2.9) x = X- Vt y a y

where V is the crack tip velocity. We assume that in the new coordi-

nate system, the wave potentials become independent of time. Then the

field equations (2.8) reduce to

B2 2 2 B2 @2 V2 (2

By means of the Fourier transform in the x-direction, we obtain

the general solution of (2.10) satisfying the conditions , )0 as

(x 2 +y 2)/2 -p +

O(k,y) - A(k) e
"-Y I (k )y

(2.11) y >O
2 (ky) a B(k) e"Y2 (k)y  ia

where is the transform variable and

(2.12) VC>0 k2V2Mc. E-k2V2)3 k

V~k~AM = BWk) Y2(k)Y
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The inversion contour of (2.11) requires proper branch cuts so as to ensure

that

(2.13) Re yi(k) > 0

The boundary conditions for moving crack in the new coordinate

system is equivalent to the static case. Therefore, the self-consistent

nonlocal boundary conditions are given by,[12]

(2.14) o yy(XO) - t0  Ixl <

v(xO) = 0 xI >z

a xy(XO) = 0 x

u,v -0 as (x2+y2 )

(2.14) and (2.11) lead to a set of dual integral equations whose solution

will determine A(k) and B(k).



3. SOLUTION OF THE DUAL INTEGRAL EQUATIONS

Substituting (2.11) and (2.7) into (2.14), we obtain

(3.1) J(E(+ = (27) {[(A2w) y1 - Ak 2] A(k) - 2 ik Y2 B(k)) ekx dk

t -t o ; x z

(3.2) v(x,O) = (2T)' T [-y1 A(k) + ik B(k)] e- ikx dk = 0

(3.3) y(x,O) = (27)"k {P{2ik yiA(k) + (y 2+k2 B(k) e-ikx dR 0

-0; V x

An exact solution to the system is yet to be found. The problem is further

complicated by the fact that the yi(k) of (2,12) assumes complex values

along the real axis between their respective branch points.

In the static crack problems, it has been shown that the classical

solution constitutes a reasonable approximation to the nonlocal one [11,12].

The only difference between the classical and nonlocal versions of the system

(3.1)-(3.3) is the dependence of yi(k; e) to e , where yi(k, c=O) = sik

(3.4) 2 = 1 - (V/Ci) 2

i =

In the limit as e - 0 , we recover the classical solution. The behaviour

of integrands in (3.1)-(3.3) for large k is similar to the classical case,
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therefore, it is expected that the limiting process, as e 0 , shall

be uniform. Hence as an approximation, one might use the classical solution

provided that the complex values of yi(k) are taken into account. To this

end, we choose a modified form of the classical solution such that

yi(k) AN(k) and y1 (k) BN(k) remain always real valued and numerically

equal to the absolute values of Yi Ac and yiBc respectively. These

conditions will be satisfied if the nonlocal solutions for A N and BN are

expressed as

(3.5) AN(k) = Pl(k) + i P2(k)

(3.6) BN(k) = Ql(k) + i Q2(k)

where

(3.7) Pl(k) = Ac(k) Ql(k) = Bc(k) ; Vk

(3.8) P2 (k) = - Ac(k) Q2(k) = - Bc(k); k R

and R correspond to those regions of the real k-line on which yl(k) or

Y2(k) are not real valued.

The classical solutions are given by [16]

(3.9) Ac(k) = (1 + s ) D0Jl(kk)/k 2

(3.10) Bc(k) = - 2 s li DoJl(kX)/k

where
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0 (12) t0  Z(V/C2)
2  4 - (l~s )2]l

It can be shown by substitution that the nonlocal boundary conditions are

uniformly approximated by (3.5)-(3.6) to the order of 0 (c ) [15].

In the present work, we are primarily interested in the normal stress

along the crack line, thus in the next section, we utilize this modified

classical solution to express the normal stress along the crack line near

the tip.

4. NONLOCAL STRESSES

The constitutive equations for the stress field are given by (2.1).

Using the standard integration formulas and substituting (3.5)-(3.10) into

(2.1), we obtain for the normal stress along the crack line

(4.1) tyy =  kl[4 sltB - 2 (l+s 2 ) tA]

where

(4.2) {tAstB} Jl(k) cosk {EA(Ek), oB(ck)} dk

0
2 _2V2 22( 2  2

(C 2-2 V 2-e2k 2V 2 Ek (C 2_ -_E k 2V2
(4.3) aA(Ek) 2 2k2 ( 222V2

1(1+ 2k2) (C -s Ek2V2)

II
- V 2 _ E e2 k 2V2  C 2 _ V2  e E2k 2 V2  C 2 

-c

(4.4) M2B(k)
C2EkV(l+E k2  C2 - e k V C2

and 1 221kl = [4 l( + s 2 to k/ 27T

'2
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(4.5) I2 = (X+2p)/2p

= xl=l

Near the crack tip, stresses are given in terms of generalized hypergeometric

functions which are difficult to visualize in graphic terms (see Appendix 1).

In the present work, we are most interested in the velocity dependence of

the crack tip stresses. Therefore we present the numerical values of

t yy(1,0; V) in Table 1.

An alternative method of solution to the system (3.1) - 3.3) is the

reduction of the dual integral equations into an equivalent Fredholm in-

tegral equation of the second kind. The Fredholm integral was then solved

numerically. The crack tip stresses so obtained are comparable to the

analytic results as shown in Table 2.

*"1

*11

.1
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5. DISCUSSION

The following results are worth noting:

(i) The nonlocal stresses at the crack tip are finite. These results

will enable us to extend Eringen's fracture criterion [17] to

dynamic rupture phenomena. In the limit as the crack velocity

V- 0 , we recover the static nonlocal crack results (see Table 1).

(ii) The local analysis of the steady-state crack problems yielded stress

intensity factors which are independent of the crack velocity and

equal to their static values (Yoffe [2] Craggs [3]). These results

are clearly undesirable in that they contradict the experimental

results which show that the crack tip velocity depends on applied loads.

The nonlocal analysis on the other hand, provided a crack tip stress

behaviour which is compatible with experiments. The substantial

difference between the local and nonlocal results can be observed

in Figure 2.

(iii) The nonlocal results can be employed further to determine the

terminal velocity of propagating cracks. The uniformly moving

crack is in a state of dynamic equilibrium. As the crack pro-

pagates first, the interatomic bonds at the tip break. Then

as the stress around the crack tip relaxes, the next bond is

j overloaded by the sweeping stress wave. There will be a sudden

increase in the stress level above the ultimate stress one

atomic distance away from the tip.
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At the same time, from Fig. 2, we observe that the crack tip

stress decreases with increasing velocity. In the dynamic equi-

librium, two changes in the stress level compensate for each

other and the crack reaches a uniform propagation velocity.

The stress relaxation at the crack tip is a complex phenomenon.

Therefore, it is difficult to calculate the stress overshoot

precisely. However, using a harmonic oscillator model, we may

assume that it is roughly equal to the difference between the

crack tip stress and the stress level one atomic distance away

from the tip. Consequently, we propose that the terminal

velocity be determined by

(5.1) t (I a; 0) ty(l;Vt)

t yy(l+a)/t yy(1) is given in [12, Table 1] for the static crack

problem. t yy(v)/t yy(0) is plotted on Fig. 2. On Fig. 3, both

curves are drawn together-- their crossing point yields the value

of the terminal velocity as

(5.2) Vt = c2  pn-(O.5 - 0.6)

Note that, in the case one is able to solve the stress relaxation

problem at the crack tip, [t (l+a)/t (1) in fig. 3, may not
yy yybe a straight line any more (i.e. it will be velocity dependent).

In that case, the terminal velocity estimates will be slightly

modified.
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(iv) By formal extension of Eringen's fracture criterion to dynamic

phenomena, we can predict qualitatively the variation 
of the

surface energy with the propagation velocity. The Griffith

definition of surface energy can be formally extended 
to the

velocity dependent case by

(5.3) t2 a -- C(V)2 y(V)

where y(V) is the surface energy, Ij,v are the standard

material mnoduli, tC  is the cohesive stress, a is the inter-

atomic distance and C(V) is defined by

(5.4) tyy(1,0)/t 0 = C(V) (21/a)1/2

By assuming the cohesive strength, a material property and

therefore constant, from (5.3) we can deduce that

(5.5) x.Y3. = ECQ{23j2

From (5.3) and Table 1, we can deduce that the surface

energy increases with increasing crack velocity. Although there is

considerable scatter in the experimental values of dynamic surface

energies, the nonlocal results are in agreement with their general

tendency to increase with crack speed [9].

i77-
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t (v) If one wishes to establish a link with classical fracture theories,

the following is interesting to mention. A typical fracture tough-

ness versus crack velocity relationship is shown in Figure 4 [18].

The general character of this relationship is supported by physical

considerations (Erdogan [19], Freund [20]), as well as by experiments

on structural mild steel [21, 22] and on glassy polymers [23]. On

Figure 4, we also plotted the ratio t yymax(V)/t yymax(0).

Figure 4 indicates that in the lower velocity ranges, the fracture

toughness decreases faster than the maximums tress with increasing velocity.

Thus when

(5.6) t yymax(V) > t yycritical(V)

the crack will accelerate. According to Eringen's fracture criterion, a

dynamic equilibrium will be established when

(5.6) ty (Vt) = t (Vt)tmax( Y'3 critical

We can therefore determine the terminal velocity, assuming that it is

defined by this dynamic equilibrium. From Figure 4, we observe that the

terminal velocity will be on the order of

(5.7) Vt 0.55 C2

4]
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The important feature of this result is in that it predicts a terminal

velocity well below the Rayleigh wave speed,-/ which is consistent with

experimental observations and some numerical simulation studies [24].

Furthermore, it is obtained by a simple, natural fracture criterion,

without extraneous arguments. The present approach, however, should be

considered with some caution, since the fracture toughness measurements

include some global effects such as viscoelasticity and plasticity. There-

fore, we prefer the microstructural considerations discussed in (iii),

to predict the terminal velocity.

(vi) The explanation of crack bifurcation phenomena is much more

difficult. Experimental observations suggest that [25]

(1) Of C% =  constant

!b

where of is the fracture stress and Cb is thelength of

the crack at the moment of branching.

(2) "Crack branching is not a spontaneous event".., but is

the eventual outcome of cumulative process of advance

cracking.

These characteristics of crack branching suggest that it is not likely

to explain crack bifurcation solely in terms of a critical branching

velocity. One has to consider the fracture energies of the involved

materials (i.e. glasses do have low but tool steels do have high fracture

energies). In addition, the accelerating phase of the crack propagation

has to 0e taken into account.
1For example, Broberg's local analysis [4] predicts Vt= VR.
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Our present analysis does not include considerations about advance

cracking and acceleration effects. Hence we do not attempt to explain

crack branching on the basis of the present result. Nevertheless, from

the foregoing conclusions, it is clear that the nonlocal dynamic results

are in the right direction.



21

TABLE IM.

VARIATION OF CRACK TIP STRESS

WITH THE CRACK TIP VELOCITY

(from 4. 3. 1~~

V/C 2  t y, (1.0;V)/t y,(0,0; VMO)

0.1 0.96

0.2 0.93

0.3 0.89

0.4 0.84

0.5 0.77

0.6 0.68

0.7 0.55

0.8 0.27
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FIGURE 1

PLATE WITH MOVING LINE CRACK

~~NAM



22

Classical Solution [2]

iI1.0 . .

0.9

t yy (l,O;V) 0.8

t yy(l 0;0) 0. 7

06 Nonlocal Solution
(4.1, Table 1)

0.5

0.4

0.3

0.2

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 v/C2

FIGURE 2

COMPARISON OF LOCAL AND NONLOCAL

CRACK TIP STRESSES
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1 .0

t (I;V

yy 0.8

0.6I

0.4 t _ (1+a)

0.2vtc

0 0.2 0.4 0.6 0.8 vc

FIGURE 3

TERM4INAL VELOCITY

(Nonlocal Determination)

------------ -
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t (v) K (vtmax(-TKIc(V
maxO K (0)

Dynamic Fracture Toughness

0.8

0.6

Max Stress
II

0.4 I
I
I

0.2 1
I Vt(C 2)

0.2 0.4 0.6 0.8 V/C2

FIGURE 4

TERMINAL VELOCITY DETERMINATION

BY FRACTURE TOUGHNESS DATA
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APPENDIX 1

The evaluation of the stress tip integrals can be facilitated by

the use of the asymptotic expansion of Bessel functions, i.e.

(A.) Jl(k) n k-1 cos (k - 3n/4) + O(k-3/2) ;kl

Substituting (A.l) into (4.2), we obtain the following results as 1 +

(A.2) tA  = [(C 2  2 2V2)/C 2(t + t + t) (t + t + t

A I a c e b (t~ dtc)

(A.3) tB = tg + ti + tk

where

!2' /2 32514 r(918) r(1314)(A.4) t 2 2s K 0.5 sS M3 2 i1 1 1 1 2 5/ r(9/8) F(3/8)

3F2(1/2, 3/2, 3/4; 13/8, 9/8; qa)

(A.5) tb 0.4 s 5/2 M1/2 -0.5 s9 /2  3/20/2 r3/2)r(7/4)

= 1 1 1 1  2 r(13/8) r(17/8)

3F2 (1/2, 3/2, 7/4; 17/8, 13/8; qa)
4 2qa =s I"M1

(2.6) t 2(1-s12 M112 - 0.5 M-3/2 1 12 B(1/2, 3/2)

(1/2)n (3/2)n ( nM2n F

n0 n! 1 2 (1/4, n+3/2; n+2; qr))
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(A.7) td = 0.4 (1-s 5 12  M 2 0.5 M-  B(1, 3/
d1 1 1 S1  B(/,32

0 (112)n ( 2F 1 (-3/4,n+3/2;n+2;qc))

(A.8) ~~n- t e 05M/ 4 (2(-) n' ) (i 1 2 n '/)

nn= n

2f

2F1(-1/2, n-1/4; n+1/4; s2)]]

(A.9) tf 0.5 MI/ 2 [0.4 + r(112)i-( n- 5/ 4 )  [ 1 (1/2)n (-5/4)n (MlZ

2F1(-1/2, n-5/4; n-3/4; s)]

1]/2F 3/22

(A.10) tg : 0.5 M2 Es2  B(3/2, 1/4) 2F1(-1/2, 1/4; 7/4; s 2 )

- s 7 2 M2 B(2,3/4) 2F(1/2, 3/4; 11/4; - s 2 M2

2/2 2F1 2/ 2)]

(A.11 t1 =0 .5(M-71  s2 2 B(3/2,3/2) F,(3/4,3/2; 3;-

2 2 9-,/,1  -2 2F1 7/,/41/4

- [(4/7) M22 q7/
4 F(7/4,9/4;11/4;qi) s 7/2 'F(7/4,9/4;2/4;s 2

2 3/22 2

(4/3) s 2i-3/4 F(3/4,5/4;7/4;qi) s 3/2 2F(3/4,5/4
;9/4;s 2)A

qi C 2/(C2 +
2
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(A. 12) tk (1/3) M-3/2 s 0 5 M-112  (-2)n M 2  F(/,; -/ 2
2 n=2 n (n 5/ 4)2F1 (314,1; n2l 4;

(1/2) 1 2
n2 n! -- ) n-5/4 n-1/4 ]

where

Mi = ci/V i=,2

2 - 2
si (V/c)

The above results are obtained either by standard integration

formulae or when necessary, by expanding the integrands and integrating term

by term. The integration intervals are naturally divided by the presence of

the branch points [151.

Depending on the values of (V/ci) , all series can be cast into

rapdily converging forms by proper analytic continuation. The numerical value

of the hypergeometric functions can also be found easily by evaluating the

already existing sharp inequalities for lower and upper bounds. The relevant

formulae for these inequalities and the necessary analytic continuation iden-

ties can be found in standard references.

ii
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